Устройство и технология укладки ленточного фундамента

  • Дата: 19-07-2015
  • Просмотров: 1388
  • Комментариев:
  • Рейтинг: 14

Желающих иметь собственный дом за чертой города или хотя бы дачу в наше время предостаточно. Однако не все имеют возможность заказать такую стройку в специализированной компании и получить готовое строение под ключ. Но всегда актуальным остается вопрос экономии. И в этом случае устройство ленточного фундамента действительно позволяет сделать его самостоятельно и снизить финансовые расходы, заложенные в смету будущего строительства.

Варианты ленточного фундамента

Варианты устройства ленточного фундамента.

Устройство ленточного фундамента только на первый взгляд кажется простым, и это не должно стать причиной пренебрежительного отношения к его строительству. Необходимо сознавать, что фундамент является основанием всего строения, и технология укладки фундамента должна быть соблюдена. От этого во многом будет зависеть, как долго простоит ваш дом.

Нецелесообразно, например, самому монтировать отопительную систему, это чревато переделками. Рискованно самому браться и за возведение стен, установку перекрытий и строительство крыши. Везде требуются знания и опыт. Технология устройства фундамента не сложная, и при очень серьезном отношении ленточный фундамент для дома реально построить самостоятельно.

Зависимость типа фундамента от характеристики грунта

Среди всех видов фундаментов этот тип является наиболее затратным. Но иногда обстоятельства требуют, чтобы была применена технология устройства фундамента именно ленточного. Например, для создания подвала глубокозаглубленный ленточный фундамент является единственным приемлемым вариантом.

На выбор конструкции и технологию укладки фундамента влияет характеристика грунта: глубина промерзания, уровень грунтовых вод и несущая способность.

Схема ленточного фундамента

Схема ленточного фундамента на песчаной подушке.

Идеальными для строительства дома являются скалистые и каменистые площадки, которые сами могут быть его основанием. Следующими по надежности являются хрящеватые грунты, представляющие механическую смесь мелкого камня или щебня с песком и глиной. На таких грунтах даже мелкозаглубленных ленточных фундаментов достаточно для строительства массивных сооружений.

Подробнее охарактеризуем песчаные грунты, супеси, суглинки и глины. Основной характеристикой, важной для ленточных фундаментов, является несущая способность грунтов. От нее зависит площадь опоры и, как следствие, его размеры.

Несущая способность – это предельно допустимая величина нагрузки, приходящейся на 1 см² поверхности грунта. Если нагрузка превышает допустимое значение, значит, необходимо либо увеличить площадь опоры, либо отказаться от строительства такого массивного сооружения. В задачу ленточного фундамента входит равномерное распределение нагрузки по поверхности грунта. В таблице № 1 приведены значения несущей способности различных грунтов в зависимости от их плотности.

Таблица № 1

Вид грунта Несущая способность [σ], кг/см2
Плотный грунт Грунт средней плотности
Мелкий песок (маловлажный) 4 3
Мелкий песок (влажный) 3 2
Песок крупный 6 5
Песок среднего размера 5 4
Супесь (сухая) 3 2,5
Супесь, влажная (пластичная) 2,5 2
Суглинок (сухой) 3 2
Суглинок, влажный (пластичный) 3 1
Глина (сухая) 6 2.5
Глина, влажная (пластичная) 4 1
Вернуться к оглавлению

О грунтовых водах и глубине промерзания

Ленточный фундамент глубокого заложения

Схема устройства ленточного фундамента глубокого заложения.

Анализируя таблицу, необходимо обратить внимание на влияние влажности на несущую способность. Особенно она сказывается на несущей способности грунтов средней плотности (это не относится к песчаным). Например, сухой суглинок средней плотности имеет в 2 раза большую несущую способность, чем влажный. На несущей способности плотного суглинка влажность практически не сказывается. В свою очередь, плотность также неодинаково влияет на несущую способность. Например, плотная влажная глина может выдержать в 4 раза большую нагрузку, чем глина средней плотности.

Влажность почвы зависит от уровня грунтовых вод, и, как следствие, могут потребоваться специальные мероприятия для защиты от их влияния. Для заглубленных конструкций обычно необходимо создавать дренажную систему, что, естественно, удорожает строительство.

Глубина промерзания грунта зависит от климатической зоны, в которой планируют строительство, и ее среднее значение для данного района можно узнать в соответствующих организациях. Для ориентирования жители Европейской части России могут воспользоваться номограммой, представленной на изображении 1. Поскольку фундамент закладывают так, чтобы его основание было на 15-20 см ниже глубины промерзания, то желательно этот уровень знать как можно точнее, ибо каждый см высоты – это лишние затраты.

Номограмма

Изображение 1. Номограмма, определяющая глубину промерзания грунта в России.

Например, Нижний Новгород расположен между линиями, указывающими на глубину промерзания 140 и 160 см. Для определения глубины промерзания грунта вблизи этого города потребуются циркуль и мерная линейка. Измеряем расстояние S между линиями по параллели, на которой расположен город, и расстояние S1 от линии 140. Затем по формуле определяем глубину промерзания h.

h = 140+20·S1/S.

На фундамент, основание которого находится ниже глубины промерзания, не действуют выталкивающие силы, возникающие в результате пучности грунта. Степень же пучности зависит от количества влаги, содержащейся в грунте. Лед занимает больший объем, чем вода, из которой он образовался, получаем прямую зависимость: чем больше влаги, тем больший объем займет лед и тем сильнее грунт будет воздействовать на фундамент в вертикальном направлении.

Вернуться к оглавлению

Способы определения характеристик грунта

Вид грунта определяем по некоторым признакам. Если песок невозможно с чем-то спутать, то с другими грунтами сложнее. Между собой они различаются процентным содержанием глины. В супеси ее содержится не более 10%. Поэтому что-либо слепить из нее в ладонях не получится.

Схема армирования ленточного фундамента

Схема армирования ленточного фундамента.

Из суглинка, в котором может содержаться до 30% глины уже можно скатать вполне устойчивый шарик. Если теперь его сжать между ладонями, то надежным признаком этого вида грунта будут трещины по периметру образовавшейся сплюснутой формы.

Глину от других видов отличить можно уверенно. На сплюснутой между ладонями чечевицеобразной форме никаких трещин не образуется, а для большей убедительности, глину скатывают между ладонями, пытаясь создать «шнурок». Если это удается сделать, значит, никаких сомнений – это глина.

Когда возможность проведения лабораторных испытаний отсутствует, практики предлагают упрощенный метод определения влажности грунта.

Если траншея под фундамент имеет глубину Н≤1,5 м, то образец грунта берут с глубины 0,5 м. При более глубокой траншее образец берут с глубины, равной Н/3. Необходимо также знать объемный вес грунта Роб (см. таблицу № 2).

Таблица № 2

Вид грунта Коэффициент пористости, С Объемный вес, Роб кг/м3
Глина 0,5 1800-2100
0,6 1700-2100
0,8 1700-1900
1,1 1600-1800
Суглинок 0,5 1800-2050
0,7 1750-1950
1,0 1700-1800
Супесь 0,5 1700-2000
0,7 1500-1900

Делаем деревянный ящик объемом 0,008 м³ (20×20×20 см), взвешиваем его и заполняем грунтом. Плотно утрамбовываем и сразу же снова взвешиваем. Вычитаем вес ящика и определяем вес грунта, Ргр.

Расчет ленточного фундамента.

Расчет ленточного фундамента.

Чтобы по таблице 2 определить Роб, необходимо знать коэффициент пористости, С. Он равен отношению объема пор в грунте к объему его минеральной части. Его определяют косвенно через вес воды в порах и вес сухого грунта Рсух. Грунт в ящике хорошо высушивают, то есть удаляют из пор влагу, вычитают вес ящика, определяют вес Рсух. Коэффициент пористости равен:

С=(Ргр – Рсух)/ Рсух. (1)

Примечание. Разность в числителе формулы (1) равна весу удаленной воды. Поэтому, например, С=1,1 свидетельствует о том, что вес воды в порах превышает вес сухого грунта.

По таблице 2 находим значение Роб и определяем влажность по формуле:

W=100·( Ргр-0,008·Роб)/ 0,008·Роб (2)

Вернуться к оглавлению

Предварительный расчет веса стройки

Зная несущую способность грунта, можно решить прямую и обратную задачу. При решении прямой задачи необходимо знать площадь, занимаемую фундаментом SФ, и вес всего строения Q. Учитывают вес стен, перекрытий, кровли, всего инженерного оборудования. Естественно, учитывают и собственный вес ленточного фундамента. Теперь необходимо проверить условие:

[σ] ≥ Q/SФ. (3)

Если условие выполнено, значит, грунт выдержит нагрузку, создаваемую сооружением.

Смысл обратной задачи в определении максимального веса сооружения Qmax. Из условия (3) имеем:

Qmax = [σ]·SФ. (4)

Схема расчета монолитного ленточного фундамента.

Схема расчета монолитного ленточного фундамента.

Чтобы представить, как зависит вес строения от несущей способности грунта, нет необходимости рассчитывать его вес. Это влияние будет понятно, если предположить, что все стены здания являются продолжением фундамента. Покажем это на конкретном примере.

Пусть ширина кирпичного или бутобетонного основания равна l=0,5 м, а периметр и длина внутренних несущих конструкций в суме равна L = 50 м. Это вполне реальные размеры для строения, например, площадью 10×8 м.

Удельный вес кирпича и бутобетона составляет в среднем q = 2000 кг/м³. Предположим, что грунт под стройкой – влажный суглинок средней плотности, у которого [σ]·= 1 кг/см². Определяем площадь фундамента SФ=l×L= 0,5×50= 25 м² = 25·104 см².

По формуле (4) определяем общий вес, который может иметь дом.

Qmax = [σ]·SФ=1·25·104 кг=250 т

Определяем общий объем кирпичной кладки:

V = Qmax/q=25·104/2000=125 м3.

Вариант мелкозаглубленного ленточного фундамента.

Изображение 2. Вариант мелкозаглубленного ленточного фундамента.

Зная площадь фундамента, определим общую высоту дома:

НД=V/SФ=125/25= 5 м.

Если дом с подвалом, глубина которого составляет примерно 3 м, то на влажном суглинке средней плотности можно построить дом с погребом с высотой стены, равной 2 м. При этом кирпичная стена будет иметь толщину меньшую, чем основание, но будут учтены кроме веса стен и другие элементы здания.

Если строить дом на плотной влажной глине, у которой несущая способность в 4 раза больше, то общая высота составит 20 м, а высота стены 17 м. С учетом веса других элементов можно построить дом в 4 этажа.

Решать обратную задачу целесообразно только для ориентирования. Если же известен вес элементов здания, то достаточно решить только прямую задачу.

Вернуться к оглавлению

Мелкозаглубленный ленточный фундамент

Заглубление ленточного фундамента

Изображение 3. Фундамент заглубляют таким образом, чтобы его подошва располагалась ниже уровня промерзания грунта.

На изображении 2 показан вариант мелкозаглубленного фундамента, в котором отражены все особенности этой конструкции. Такие фундаменты сооружают для зданий, возводимых на любых грунтах, и если дом небольшой и легкий, даже на торфяниках.

Независимо от грунта, для строительства на таком основании рекомендуется использовать легкие материалы, такие как пенобетон и пеноблоки, керамзитобетон и древесина. На изображении 2 показан вариант именно для возведения деревянных стен. Ширина ленточного фундамента в 200 мм подойдет только для монтажа деревянного бруса.

Следует обратить внимание еще на одну особенность конструкции, показанной на изображении 2. Ширина основания фундамента увеличена до 500 мм. Это сделано потому, что при ширине 200 мм не выполнялось условие 3.

Такой прием уменьшения давления на грунт позволяет значительно сэкономить расход материала. Действительно, как указано на фрагменте справа, поперечное сечение фундамента составляет 0,22 м², а если бы его ширина была по всей высоте была равна 500 мм, то сечение при высоте 800 мм составило бы 0,4 м², то есть расход материала увеличился бы в 1,8 раза.

Строительство в конце заливки опалубки бетонным раствором.

Изображение 4. Строительство в конце заливки опалубки бетонным раствором.

Для такого фундамента подходит бетон класса В30, что соответствует марке М400. Для самостоятельного приготовления бетона указанной марки полезно знать такие данные.

Необходимое соотношение: Ц:П:Ш (цемент, песок, щебень) – 1:1,2:2,7;
Объемный состав: на 1 л цемента 11 л песка и 24 см³ щебня.

Каких-либо дополнительных пояснений для изображения 2 не требуется: указаны все необходимые размеры и материалы.

При этом мелкозаглубленный фундамент для дома никогда не делают из отдельных блоков. А вот создавать с помощью бура шурфы ниже глубины промерзания грунта рекомендуется. Расстояние между шурфами 1,5-2 м.

Вернуться к оглавлению

Заглубленный ленточный фундамент

Фундамент заглубляют так, чтобы его подошва находилось ниже уровня промерзания грунта. Обычно траншею копают глубиной, не превышающей 2 м. Общее представление о начале строительства можно получить на изображении 3. Подушку ниже уровня промерзания толщиной 20 см делают из песка средней крупности или из щебня.

Готовый ленточный фундамент

Изображение 5. Готовый ленточный фундамент после застывания бетонного раствора.

Подушку укладывают слоями. Каждый слой хорошо уплотняют. Сверху ее накрывают прочной полиэтиленовой пленкой. Вместо пленки песок (щебень) можно залить жидким бетоном и подождать примерно 7 дней, пока он застынет. Затем устанавливается опалубка, и обвязывается или закрепляется сваркой арматура.

Опалубку устанавливают из досок толщиной 40-50 мм. Постепенно, увеличивая ее высоту, добиваются, чтобы она возвышалась над поверхностью земли примерно на 30 см. Это будет небольшой цоколь. В фундамент закладывают асбоцементные трубы для канализации и водопровода.

Каркас арматуры формируют параллельно с опалубкой. Его устанавливают рядами по вертикали. Количество арматуры зависит от размера фундамента по высоте. Шаг между рядами может составлять 10, 15 или 25 см. Если арматуру скрепляют с помощью сварки, то эту операцию можно выполнять вне траншеи.

Бетон делаем марки М400, состав которого уже указан. Его заливают постепенно слоями толщиной 15-20 см и трамбуют обыкновенной трамбовкой. Хорошо, если имеется вибратор. Чтобы качественнее утрамбовать бетон, нужно вибратором или деревянным молотком простукивать опалубку.

Как выглядит строительство в конце заливки, можно судить по изображению 4, а о готовом – по изображению 5.

Вернуться к оглавлению

Основание для дома с подвалом: технология укладки фундамента

Стены подвалов

Изображение 6. Стены подвалов: а) в непучинистых и б) в пучинистых грунтах.

Такая конструкция должна обеспечить надежность всему сооружению и нормальное функционирование подвала. Здесь возникает необходимость сочетать прочность основания с требованиями к стенам подвала.

Надежной является конструкция, когда стена выполнена монолитной, из железобетона. Несмотря на то, что бетон – неплохой изолятор для влаги, стены с внешней стороны подвала нужно дополнительно изолировать.

Стены подвала должны быть на 20-30 см толще стен самого здания. Очень внимательно необходимо отнестись к армированию. В углах стен арматура должна находиться под прямым углом.

Стены можно сложить из специального кирпича, не пропускающего влагу, например керамического. Через 40 см кладки ее усиливают бетонным поясом, соединяя кирпич и бетон металлической арматурой. Таким же слоем стена должна обязательно заканчиваться.

На изображении 6 схематично показаны стены подвалов: а) в непучинистых и б) в пучинистых грунтах. Далее приведены названия элементов, показанных на схеме.

Материковый грунт 1; гидроизоляция 2; насыпной утрамбованный грунт 3; уплотненная жирная глина 4; отмостка 5; утеплитель 6; асбестоцементный лист 7; стена дома 8; верхнее покрытие пола 9; подшивка 10; балки 11; железобетон 12; кирпич 13; лаги 14; цементная стяжка 15; бетон 16; щебень 17; уровень отмостки при замерзании грунта 18; бетонные или керамические плиты 19; расчетный уровень промерзания грунта 20; уровень грунтовых вод 21.





Фундамент является основой всего здания, поэтому перед его укладкой необходимо учесть все внешние факторы, влияющие в будущем на его прочность и надежность.